最简单的数学应用题(6篇)。
在我们动笔之前,最好先观察已有的范文例子,阅读经典范文可以启发我们的人生智慧和生命力,您是否收藏了很多好的范文呢?今天小编为大家整理了一个“最简单的数学应用题”专题快来看看吧,感谢您来到这个网站我们将提供更多高质量的内容!
最简单的数学应用题【篇1】
比和比例应用题是小学数学应用题的重要组成部分。在小学中,比的应用题包括:比例尺应用题和按比例分配应用题,正、反比例应用题。
(一)比例尺应用题
这种应用题是研究图上距离、实际距离和比例尺三者之间的关系的。
● 解答这类应用题时,最主要的是要清楚比例尺的意义,即:
图上距离÷实际距离=比例尺
根据这个关系式,已知三者之间的任意两个量,就可以求出第三个未知的量。
● 例题如下:
在比例尺是1:3000000的地图上,量得A城到B城的距离是8厘米,A城到B城的实际距离是多少千米?
● 思路分析:
把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。所设未知数的计量单位名称要与已知的计量单位名称相同。
(二)按比例分配应用题
这类应用题的特点是:把一个数量按照一定的比分成两部分或几部分,求各部分的数量是多少。
这是学生在小学阶段唯一接触到的不平均分问题。
● 这类应用题的解题规律是:
先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。
按比例分配也可以用归一法来解。
● 例题如下:
一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。2500千克水需要药粉多少千克千克药粉需加水多少千克?
● 思路分析:
已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。
(三)正、反比例应用题
解答这类应用题,关键是判断题目中的两种相关联的量是成正比里的量,还是成反比例的量。
如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:
kx=y(一定)。
如果两种相关联的量成反比例时,可用下面的式子来表示:
×y=K(一定)。
● 例题如下:
六一玩具厂要生产20XX套儿童玩具。前6天生产了960套,照这样计算,完成全部任务共需要多少天?
● 思路分析:
因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。
最简单的数学应用题【篇2】
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】 总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
例3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
例2、小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
例3、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2
【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
例3、有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
例4、甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
和倍问题
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】 总和 ÷(几倍+1)=较小的数
总和 - 较小的数 = 较大的数 较小的数 ×几倍 = 较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
例3、甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
例4、甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
差倍问题
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】 两个数的差÷(几倍-1)=较小的数
较小的`数×几倍=较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1、果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
例2、爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
例3、商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
例4、粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?
倍比问题
【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量 【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】 相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
植树问题
【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】 线形植树 棵数=距离÷棵距+1
环形植树 棵数=距离÷棵距 方形植树 棵数=距离÷棵距-4
三角形植树 棵数=距离÷棵距-3 面积植树 棵数=面积÷(棵距×行距)
【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
年龄问题
【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。
例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?
例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?
例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?
例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?
11
行船文题
【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】 (顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2
【解题思路和方法】 大多数情况可以直接利用数量关系的公式。
例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?
最简单的数学应用题【篇3】
一、活动目标:
1.能根据图片内容编8以内加、减法的应用题并列出相应的算式。
2.让幼儿学习分析问题的能力以及看图编应用题的想象力。
3.培养幼儿养成良好的坐姿和正确的握笔姿势,并形成良好的操作习惯。
4.提高幼儿思维的敏捷性。
5.培养幼儿的多项思维能力及动手操作能力,培养幼儿对数学活动的兴趣。
能根据图片内容编8以内加、减法的应用题并列出相应的算式。
四、活动方法与手段:
多媒体演示法、谈话法、操作法等等。
1、1-20单数,两个两个数1-20,五个五个数。
1.幼儿根据教师的要求复习数数。
2.师幼共同玩碰球游戏。
运用不同的形式复习数数,激发幼儿的兴趣并帮助他们巩固对数的认识。
提问:小朋友,图片上有什么呀?接下来发生了什么事情?你能将这件事情编成一道应用题说一说?那列成算式怎么说?你还能根据这个算式编出其他的应用题吗?
3、看图自编应用题并列出相应的算式。
教师:接下来老师可要考考大家,看看你们谁能又快又准地看着图片编一道应用题并列出一个算式呢?
3、教师出示第三幅图片(小朋友玩气球)。
7、师:小朋友,你们都会了吗?现在可是要你们来练练本领咯!
8、出示图片,讲解作业要求与方法。
注意:
(1)写作业时记得看清楚是加法还是减法哦!
(2)我们在写字时要保持正确的坐姿和握笔姿势,谁来说说看应该是什么样子的?
教师小结:将纸放平摆正,抬头挺胸,手臂放平,食指与拇指的前端捏住笔杆,眼睛离纸头比要一把尺还长一点的距离。
9、幼儿操作,教师巡回指导。
行列算式。
6.说一说正确的坐姿和握笔的方法。
1.通过观看课件让幼儿清晰的了解整个事件,活动中教师以提问的引导方式帮助幼儿学会看图编应用题和看图列算式两个主要技能。在这里教师只是辅助的作用,运用课件生动形象又直接的观察让幼儿能更进一步的成为学习的小主人。不仅学习了新的技能,而且提升了幼儿的观察力和语言组织能力。
2.在本次活动中,运用课件创设了多种不同的情景氛围,让孩子在感兴趣的基础上主动去学习,在复习数数和碰球游戏的.基础上清晰地知道6、7、8的组成与分合,在观察图片与对话中帮助幼儿梳理图中内容,使得幼儿能更好理解内容,让绝大多部分幼儿都能较轻松的编出应用题并列出算式。
3.在操作环节中,询问并提醒幼儿正确的坐姿与握笔姿势,让孩子在平时的生活中就注意到写字时的良好习惯,并应该每次都坚持保持正确姿势。
请个别幼儿展示自己的作业纸,其他幼儿进行检查作答情况。通过作业点评帮助幼儿了解自己新知识的掌握情况。
活动反思:
在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。
最简单的数学应用题【篇4】
活动目标:
学习解答口报应用题,初步感受应用题的数量关系。
能边听应用题边摆算式,认识减号、等号。
活动准备:
贴绒数字和符号(减号、等号)教具若干。
活动过程:
集体活动。
学习解答口报减法应用题。
A:停车场有2辆,开走了一辆,停车场还剩下几辆呢?你是怎么算出来的?”请小朋友用一道算式表示。“这道算式表示一件什么事情?谁来说说看?”减号是什么样的?(一横)等号是什么样的?(两条长长的横线)
B:操场上有3个小朋友,走掉了一个小朋友,操场上还剩几个小朋友呢?
C:幼儿学习用算式记录口报应用题。
树上有3只鸟,飞走了2只鸟,树上还剩几只鸟呢?
桌上有5个苹果,吃掉了2个苹果,桌上还剩几个苹果呢?
小组活动。
幼儿作业)教后感:这是一节在练习过程中大部分孩子都做的很对,初步感受应用题的数量关系。掌握得也比较好。
活动反思:
在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。
最简单的数学应用题【篇5】
一、从1写到20(10分):
———————————————————————————二、计算(20分):
3+4= 2+5= 8+3= 6+5= 3+7=
6+4= 7-3= 9-2= 8-4= 3-2=
+ = + =
四、分解与组合(20分):
1 3 2 4 1 4 3 2
5 1 1 5 2 1 5
5( )9 13( )10 6 ( ) 8 3 ( ) 5 12 ( ) 6
20( )10 17( )19 9 ( ) 11 18 ( ) 14 0 ( ) 4XmW98.coM
六、找朋友(10分):
七、看图编应用题(见课本23页)(10分):
最简单的数学应用题【篇6】
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完 29.5-3x4=2.5x 17.5=2.5x x=7 还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90x2 18x=180 x=10 它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40x87.1+42x=85x82 3484+42x=6970 42x=3486 x=83 平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800 x=80 平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵? 平均每行梨树有x棵 6x-52=20 6x=72 x=12 平均每行梨树有12棵