有理数的乘方教案
时间:2025-06-16 作者:小麦网有理数的乘方教案(收藏十一篇)。
作为一名人民教师,常常要根据教学需要编写教案,教案有助于顺利而有效地开展教学活动。那么写教案需要注意哪些问题呢?以下是小编整理的《有理数》教案设计,欢迎阅读,希望大家能够喜欢。
有理数的乘方教案 篇1
《1.2有理数》教学设计
【学习目标】:
1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准 与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念
【学习难点】:正确理解分类的标准和按照一定标准分类
《1.2.1有理数》同步练习含答案
5.对-3.14,下面说法正确的是(B)
A.是负数,不是分数
B.是负数,也是分数
C.是分数,不是有理数
D.不是分数,是有理数
《1.2有理数》同步练习含答案解析
8.如果a与1互为相反数,则|a|=( )
A.2 B.﹣2 C.1 D.﹣1
【考点】绝对值;相反数.
【分析】根据互为相反数的定义,知a=﹣1,从而求解.
互为相反数的.定义:只有符号不同的两个数叫互为相反数.
【解答】解:根据a与1互为相反数,得
a=﹣1.
所以|a|=1.
故选C.
【点评】此题主要是考查了相反数的概念和绝对值的性质.
9.若|1﹣a|=a﹣1,则a的取值范围是( )
A.a>1 B.a≥1 C.a<1 D.a≤1
【考点】绝对值.
【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.
【解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故选B.
【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.
有理数的乘方教案 篇2
幂的乘方是单项式乘除运算的基础,必须让学生牢固掌握。我在教学中采用先复习乘方的意义和同底数幂相乘的性质,再引入幂的乘方的意义和性质,这样比较自然,易于学生理解。
把幂的乘方的性质应用于计算,培养学生使用一般原理进行演绎推理的能力,教学中应予以重视。我在这个环节的'处理力度还不够大,分析的还不够透彻。在这个方面应该让学生正确识别幂的“底”是什么,幂的指数是什么,乘方的指数是什么,然后正确运用幂的乘方的性质进行正确计算
另外,我在教学时还特别注意了它的反向运用的教学。即(amn)=(am)n=(an)m。对它的灵活运用可以提高学生的解题技能。
本节课的设计意图是让学生以“观察―归纳―概括”为主要线索,在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展。从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养。在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的教学目标。
不足之处在拔高学生思维的过程中时间较仓促,梯度不够,今后还应加强研究和向他人学习,不断提高自己在各个方面的能力。
有理数的乘方教案 篇3
教学目标:
知识能力:
理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:
经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:
通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
会把所给的各数填入它所属于的集合里
教学方法:
问题引导法
学习方法:
自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数
2._______和_________统称为分数
3.__________统称为有理数
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:__________;正整数:__________、负整数:__________、正分数:__________、负分数:__________.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的`学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.b
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是()
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D.0既不是正数也不是负数
5、下列说法正确的有()
(1)整数就是正整数和负整数
(2)零是整数,但不是自然数
(3)分数包括正分数和负分数
(4)正数和负数统称为有理数
(5)一个有理数,它不是整数就是分数
五、总结与反思:
通过本节课的学习,你有什么收获?
六、作业:
必做题:课本14页:1、9题
有理数的乘方教案 篇4
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的`理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
有理数的乘方教案 篇5
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
教学分析:
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
教学过程:
一、知识导向:
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
二、新课:
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的'东方6米处
拓展:如果规定向东为正,向西为负
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的西方6米处
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
例:计算:
(1)(2)
三、巩固训练:
P52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
P57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
有理数的乘方教案 篇6
【教学目标】
1、巩固有理数乘法法则;
2、探索多个有理数相乘时,积的符号的确定方法、
【对话探索设计】
探索1
1、下列各式的积为什么是负的?
(1)—2345
(2)2(—3)4(—5)6789(—10)、
2、下列各式的积为什么是正的?
(1)(—2)(—3)456
(2)—2345(—6)78(—9)(—10)、
观察1
P38、 观察
思考归纳
几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
(见P38、思考)
与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值
例题学习
P39、例3
观察2
P39、 观察
练习
P39、练习
作业
P46、7、(1),(2)(3),8,9,10,11、
补充练习
1、(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=—3呢?
(2)a与2a哪个大?
(3)判断:9a一定大于2a;
(4)判断:9a一定不小于2a、
(5)判断:9a有可能小于2a、
2、几个数相乘,积的'符号由负因数的个数决定 这句话错在哪里?
3、若ab,则acbc吗?为什么?请举例说明、
4、若mn=0,那么一定有( )
(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一个为0、
5、利用乘法法则完成下表,你能发现什么规律?
3210—1—2—3
39630—3
2622
1321
—1
—2
—3
6、(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为—a,你认为哪家商店该彩电的降价的百分率大?为什么?
(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1、2a,你认为哪家商店该彩电的降价的百分率大?为什么?
有理数的乘方教案 篇7
新课程标准数学实验教材较好地体现了课程标准的理念和总体培养目标。注意从形成学生学习经验的角度出发,充分考虑学生的年龄特征、认知水平,增强了书本知识与现实生活的联系。而数学在锻炼人的逻辑思维能力方面有特殊的作用,而这种锻炼老师不可能传授,只能是由学生独立活动过程中获得。
我在《幂的乘方与积的乘方》这节课,深入理解、研究教材中所提供的丰富的`信息资源的基础上,科学合理地使用好教材的这些有效资源。提出适应学生学情的导学提纲,让学生围绕导学提纲进行自读、初构,明确教材中的知识,活化了教材内容,增强了学生对数学内容的亲切感,激发了学生的求知欲。
我根据教学要求,从学生的实际出发,改变教材的呈现形式,把静止的画面变为动态的、有利于激发学生兴趣的、有利于学生参加数学活动和引发数学问题的情境,促使学生积极地去进行探索,使学生学得更积极主动、富有个性。
围绕导学提纲学生讨论、发出质疑,互教互学,我进行了适时点拨,在此基础上,学生把本节知识要点以构图的形式总结,用自己的语言表述,使知识条理化,同时也锻炼了学生的语言表达能力。在这精构过程中,教师不只是被动的课程执行者,而应成为课程的开发者和创造者。通过创造性使用教材,促使学生在知识、能力、情感、态度、价值观等方面得到发展。
而教材中的例题和习题,大都是一些条件充足、问题明确的标准问题,虽然有简洁的特点,却没有给学生留下自主探究的空间。因此,在教学中,我以教材例题为基本内容,对教材内容作必要处理与适当延伸。把封闭的形式变成灵活的、开放的形式,教学内容的呈现要生动、活泼,富有启发性和趣味性。补充一定的联系拓广问题会激发学生不断去探究,寻找不同的推导方法,从而培养学生求异思维与创新精神,也拓宽了教材资源,激活课堂教学。
实践表明,培养学生把解题后的再构应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。因此,在不增加学生负担的前提下,要求的作业是每节课后必须进行再构,利用作业的再构给老师提出问题,结合作业做一些合适的反思,对学生来说是培养思维能力的一项有效的活动。
有理数的乘方教案 篇8
一、教学目标
1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;
2.培养学生观察、归纳、概括及运算能力
3 使学生掌握多个有理数相乘的积的符号法则;
二、教学重点和难点
重点:有理数乘法的运算.
难点:有理数乘法中的符号法则.
三.教学手段
现代课堂教学手段
四.教学方法
启发式教学
五、教学过程
(一)、研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解①32=6
答:上升了6厘米.
问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)
把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的.积6的相反数-6,即3(-2)=-6.
把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.
有理数的乘方教案 篇9
教学目标:
1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;
2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。
重点:
在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。
难点:
在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。
教学过程:
一、知识导向:
通过上节课对“负数“概念的引入,通过对数范围的`补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。
二、新课拆析:
1、引例:
(1)请学生说出负数的特征,并指出实例说明。
(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。
2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:
正整数:如1,2,34…
零:0
负整数:如-1,-3,-5…
正分数:如 …
负分数:如 -0.3…
由此我们有:
概括:正整数、零和负整数统称为整数;
正分数、负分数统称为分数;
整数和分数统称为有理数。
然后根据我们的概括,我们可以对有理数进行如下的分类
分类一:分类二:
正整数 正整数
整数 零 正有理数 正分数
有理数 负整数 有理数 零
分数 正分数 负有理数 负整数
负分数 负分数
3、有关集合的简单知识:
概括:把一些数放在一起,就组成一个数的集合,简称为数集;
所有的有理数组成的数集叫做有理数集;
所有的整数组成的数集叫做整数集;……
例:把下列各数填入表示它所在的数值的圈里:
-18,3.1416,0,20xx,-0.142857,95%
正整数 负整数
整数集 有理数集
三、巩固训练:
P20 ,练习:1,2,3
四、知识小结:
从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。
五、作业:
P20-21 习题2.1:2,3,4
有理数的乘方教案 篇10
把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算
按教师要求口答并读出结果
师生共同小结:
有理数加减法混合运算的题目的步骤为
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算。
采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
这两个题目是本节课的重点.采用测验的方式来达到及时反馈。
归纳小结
教师提问:
1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法各是什么?
学生讨论后口答小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。
布置作业必做题:(一)计算:
(1)-8+12-16-23;
(2)- + - -
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小? (2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?
综合考察
学以致用
体现分层次教学使不同学生得到不同的发展
附板书设计:
2.7有理数的加减混合运算
例题:计算: 练习处
1.(+3)-(-9)+(-4)-(+2)
2. - + - +
教学反思:
本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的'形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。
有理数的乘方教案 篇11
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。一、要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘。本节课主要有以下转变
1、教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生动手实践发现结论,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课学生与学生,学生与教师之间以“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值在教学上应该抓住以下几点:
一、乘方是一种运算。相当于+、-、×、÷。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的.意义与和、差、积、商一样。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果。
二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的正数次幂是负数,负数的偶数次幂是正数,教师教学时强调做乘方时先确定符号再计算,
三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清与的区别。
四、注意讲清有理数乘方中的常见错误。写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系。
-
更多精彩有理数的乘方教案内容,请访问我们为您准备的专题:有理数的乘方教案
本文来源:http://www.xmw98.com/x/37256.html