小麦网 >地图 >实用文 >

数学应用题

最简单的数学应用题

时间:2024-01-26 作者:小麦网

相关推荐

[荐]最简单的数学应用题1500字。

编辑给你提供了以下的“最简单的数学应用题”。在制作文档时会倾注大量的精力和时间,这时我们需要认真观摩一下相关的优秀范文,学习范文能够提高我们的思考深度和广度。希望这些技能能够为你的职业发展带来更多机会!

最简单的数学应用题(篇1)

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

(1)如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

(3)如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

(1)一般公式:

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

(2)两船相向航行的`公式:

甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度

(3)两船同向航行的公式:

后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-5%)

工程问题

(1)一般公式:

工作效率×工作时间=工作总量

工作总量÷工作时间=工作效率

工作总量÷工作效率=工作时间

(2)用假设工作总量为“1”的方法解工程问题的公式:

1÷工作时间=单位时间内完成工作总量的几分之几

1÷单位时间能完成的几分之几=工作时间

最简单的数学应用题(篇2)

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的.份数

1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、 加数+加数=和 和-一个加数=另一个加数

7、 被减数-减数=差 被减数-差=减数 差+减数=被减数

8、 因数×因数=积 积÷一个因数=另一个因数

9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 总数÷总份数=平均数

5 三角形 面积=底×高÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

6 平行四边形 面积=底×高

7 梯形 面积=(上底+下底)×高÷2

8 圆形(1)周长=直径×∏=2×∏×半径(2)面积=半径×半径×∏

体积=侧面积÷2×半径

10 圆锥体 体积=底面积×高÷3

和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数

和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)

差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

相遇问题:相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

追及问题:追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间

流水问题:顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题:溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重

溶质的重量÷浓度=溶液的重量

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

最简单的数学应用题(篇3)

1、李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?

2、14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?

3、有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?

4、小花今年6岁,爸爸对小花说:"你长到10岁的时候,我正好40岁。"爸爸今年多少岁?

5、一辆公共汽从东站开到西站,开一趟。如果这辆车从东站出发,开了11趟之后,这辆车在东站还是西站?

6、王老师领男女学生个10名去看电影,要买几张电影票。

7、12辆摩托车组成一列向前开,从前往后数,银色摩托车是第8辆,问:从后往前数,它是第几辆?

8、小文今年10岁,比妈妈小29岁。去年他比妈妈小几岁?

9、妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈买回的鸭蛋是几个?

10、一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?

最简单的数学应用题(篇4)

关于小升初数学应用题公式集锦

小升初数学应用题各类型公式集锦,包括植树问题、盈亏问题、相遇问题、追及问题、流水问题、浓度问题、利润与折扣问题公式。

植树问题 :

1. 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2. 封闭线路上的植树问题的'数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题 :

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题 :

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题 :

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题 :

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题 :

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

最简单的数学应用题(篇5)

1. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:

2. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:

5/4-1=1/4

所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:

20/(1/4)=80分钟

这批零件共有:160/(80/120)=240个。

160个的时间比是4:5,相差1份,是20分钟

4份是80分钟

160个前做了120-80=40分,

80分160个,40分160/2=80

160+80=240

我也来做一种方法:

推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时

原来的工效做160个零件就用了5/3-1/3=4/3小时。

所以,每小时可以完成160÷4/3=120个

2小时完成任务,这批零件就有120×2=240个

33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50*14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20*0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。

34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?

我的思路是这样的。

三个儿子共拿出1200×3=3600元,

这3600元刚好就是两个儿子应该分得的钱。

每个儿子应该分得3600÷2=1800元。

三间房子共值1800×5=9000元,

那么每间房子值9000÷3=3000元。

再做一种思路:

每人应该分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间

也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元

继续分享算法:

如果还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元

所以,每间房子值6000÷2=3000元。

35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

我的思考如下:

小燕两次相差2A,且两次相差总画册的1/3-1/4=1/12

当A=1时,两人的总和是2÷1/12=24本,少于38本

当A=2时,两人的总和是4÷1/12=48本,多于38本

所以,A=1

第一次交换,小燕有24×1/3=8本,

原来小燕有8-1=7本

小明有24-7=17本

36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

先理清思路:根据题意可以得出下面的关系。

37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?

充分利用年龄差来解答问题。

妹妹:9岁, 哥哥:兄妹差+9 ,爸爸:(兄妹差+9)×3

妹妹:兄妹差, 哥哥:兄妹差×2,爸爸:34岁

因为爸爸和哥哥的年龄差也将恒定不变。

所以,(兄妹差+9)×2=34-兄妹差×2

所以,兄妹差是(34-2×9)÷4=4岁

即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁

三人年龄和是9+13+39=61岁

所以,再过(64-61)÷3=1年,年龄和就是64岁了。

所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁

38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,

拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,

丙用40÷(3-1)=20分钟追上甲

交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,

丙用80÷(3-1)=40分钟追上乙,把信交给乙。

所以,共用了5+20+40=65分钟。

乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。

所以共用去65+25=90分钟

又想到一个思路,追上并返回。

追上乙并返回,需要10÷(3-1)×2=10分钟

追上甲并返回,需要10×3÷(3-1)×2=30分钟

再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟

共用10+30+50=90分钟

39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

假设全是甲车间的工人,共生产:94*15=1410把;

40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;

而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。

所以,这120米就是乙路程的2/7-1/7=1/7;

乙回家的路程为:120/(1/7)=840米。

我也做两种基本的方法

方法一:

乙行甲那么远的路,就要14÷(1+1/6)=12分钟

所以甲回家有12÷(1/10-1/12)=720米

所以乙回家的路程是720×(1+1/6)=840米

方法二:

甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟

所以乙回家的路程是12÷(3/35-1/14)=840米

比实际少生产:1998-1410=588把;

一个甲车间工人换成乙车间的,多生产:43-15=28把;

乙车间共有工人:588/28=21人;

甲车间每天比乙车间多生产:1998-21*43*2=192把。

红球×1/3+黄球×1/4+白球×1/5=160-120=40………………①

红球×1/5+黄球×1/4+白球×1/3=160-116=44………………②

红球+黄球+白球=160………………………………………………③

利用初中的代数消元法思想来解答。

如果按照第一种方案,取160÷40=4次刚好取完,

红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了,

说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5

按照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个

即白球比红球多4÷2/15=30个

所以红球有30÷(5-3)×3=45个,白球有45+30=75个

黄球就是160-45-75=40个

甲超过了50度,乙未达到 50度。

因为33=5*5+8,可以得出:

甲用电:50+1=51度,乙用电:50-5=45度。

如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;

如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。

因此,甲50度以上,乙50度以下。

33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。

所以甲50+1=51度,乙50-5=45度

最简单的数学应用题(篇6)

1、原有29个球,借出8个,还剩多少个?

2、借出8个球,还剩21个,原有多少个?

3、买来12个苹果,吃了4个,还剩多少个?

4、吃了4个苹果,还剩8个,原来有多少个?

5、车场里开走了4辆车,还剩15辆。车场里原有多少辆车?

6、草地上的兔子跑了8只后,还剩下40只,原来有兔子多少只?

7、商店卖出汽水32箱,还剩20箱,原有汽水多少箱?

8、水果店卖出苹果76筐,还剩3筐,原有苹果多少筐?

9、小山剪了一些★,贴了31个,还剩下7个。小山剪了几个★?

10、小华看书看了92页,还剩下4页没有看。这本书有多少页?

11、英语小组原来有12个人,今天上课缺席的有2个人,今天上课的有多少人?

12、学校里有8个足球,49个小皮球,小皮球比足球多多少个?

13、商店里有26个小汽球,5个大汽球,大汽球比小汽球少多少个?

14、合唱队有38个女同学,6个男同学,男同学比女同学少多少个?

15、小明养了36只兔,小红养了24只兔,小明比小红多养了多少只?

16、商店里有35盒红汽球,20盒黄汽球,黄汽球比红汽球少多少盒?

17、梨子有5个,苹果有7个,苹果比梨子多多少个?

18、草地上有白兔7只,黑兔4只,白兔比黑兔多多少只?

19、小花8岁,爸爸38岁,爸爸比小花大几岁?

20、美术组有13人,数学组有9人,美术组比数学组多多少人?

21、草地有公鸡7只,母鸡39只,母鸡比公鸡多多少只?公鸡比母鸡少多少只?

22、食堂运回大米28袋,面粉7袋,面粉比大米少多少袋?

23、体操队有18人,游泳队比体操队多11人,游泳队有多少人?

24、水果店卖出26筐苹果后,剩下的比卖出的多9筐。剩下多少筐苹果?

25、小华有25本故事书,小方比他多11本。小方有多少本?

26、六月卖出冰箱58台,七月比六月多卖出22台。七月卖出多少台?

27、小花今年8岁,爸爸比她大29岁。爸爸今年多少岁?

28、有5个草莓,樱桃比草莓多3个,樱桃有几个?

29、小花捡了25个贝壳,小明比小花多捡了4个,小明捡了多少个贝壳?

30、数学组有9人,美术组比数学组多8人,美术组有多少人?

31、食堂运回大米28袋,面粉比大米多7袋,面粉有多少袋?

32、小明养了36只兔,小红比小明多养了3只,小红养了多少只兔?

33、商店里有35盒红汽球,黄汽球比红汽球多10盒,黄汽球有多少盒?

34、25比12多多少?

35、比32多20的数是多少?

36、一个加数是28,另一个加数比它大10,另一个加数是多少?

37、一个数比60多30,这个数是多少?

38、38比8多多少?

39、一个数是26,另一个数是58,和是多少?

40、29比7多多少?

41、比49多20的数是多少?

42、一个数比26多8,这个数是多少?

43、第一个加数是58,第二个加数是89,第一个加数比第二个加数少多少?

44、被减数是69,减数是39,被减数比减数多多少?

45、比29多29的数是多少?

46、54与67的差是多少?

47、5与38的和是多少?

48、比最大的两位数多1的数是多少?

49、一个数是5,另一个数是38,这两个数相差多少?

50、一个加数是35,另一个加数比它多7,另一个加数是多少?

最简单的数学应用题(篇7)

和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数 标准数×倍数=另一个数

例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?

分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。

列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。

例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?

分析:两根绳子剪去相同的'一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

最简单的数学应用题(篇8)

1、修路队修一条长1500米的公路,已经修好了300米,剩下的要在6天修完,平均每天要修多少米?

2、运动场跑道一圈是400米,王叔叔每天坚持跑2圈半。他每天跑多少米?

3、小丽走一步长约5分米,她从家到学校一共走了540步,算一算,她家到学校大约有多少米?

4、兰兰身高134厘米,东东比兰兰高5厘米。东东身高是多少厘米?

5、红领巾小学三年级有男生257人,女生235人,已经体检身体的有387人,没有体检的有多少人?

6、图书室借出456本图书,还剩207本,现在又还回285本,图书室里现在有多少本?

7、红领巾小学买来皮球380个,足球70个,课外活动时借出去423个,现在学校还剩多少个球?

8、三(2)班捐赠图书400本后还剩273本,现在又买来125本,现在三(2)班有图书多少本?

9、冬冬想买一辆310元的滑板车,已经攒了200元。如果他每月攒30元,再攒几个月就够了?

10、东方红小学的学生为希望工程共捐赠900本书,其中故事书326本,科技书475本,其余的是连环画。连环画有多少本?

11、一个正方形的边长是8厘米,如果把它的边长增加10厘米,那么它的周长增加多少厘米?

12、一个长方形的操场周长是400米,长是宽的3倍,这个操场的长和宽各是多少米?

13、有两个同样的长方形,长是8分米,宽是4分米。如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米?

14、冬冬借了一本科技书有40页,一周后归还,他每天准备看6页,能按时归还吗?

15、三(2)班有44人,老师准备分成8个小组讨论,每组可分几人,还剩几人?

16、用一段长4米的布料可以裁5件同样大小的背心。做一件背心要用多少布?

17、一头小象重4吨,用一辆载重10吨的大货车运,一次最多能运几头小象?

18、红旗连锁店原有瓶干632袋,卖出385袋,又运来200袋,这时店里有多少袋瓶干?

19、学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本?

20、一列火车的第10号车厢原有116人,到某站后,有58人下车,有45人上本。再开车时,这节车厢有多少人?

参考答案

1. 200

2. 1000

3. 5分米=0.5米,0.5×540=270(米)

4. 139

5. 105

6. 492

7. 27

8. 398

9. 4

10. 99

11. 10×4=40(厘米)

12. 3+1=4400÷4÷2=50(米)50×3=150(米)

13. 拼成的长方形的长是:8+8=16(分米)拼成的长方形的周长:(16+4)×2=20×2=40(分米)(2)拼成的正方形的边长是8分米拼成的正方形的周长是:8×4=32(分米)

14. 能

15. 5 4

16. 0.8米

17. 2

18. 477

19. 477

20. 103

最简单的数学应用题(篇9)

1、体育用品有90个乒乓球;如果每两个装一盒;能正好装完吗?如果每五个装一盒;能正好装完吗?为什么?

90÷2=45盒

90÷5=18盒

答:如果每两个装一盒;能正好装完如果每五个装一盒;也能正好装完。因为90能整除五。

2、体育店有57个皮球;每三个装在一个盒子里;能正好装完吗?

57÷3=19盒

答:能正好装完。

3、甲;乙两个人打打一份10000字的文件;甲每分打115个字;乙每分钟打135个字;几分钟可以打完?

10000÷(115+135)=40分

答:40分钟可以打完。

4、五年级同学植树;13或14人一组都正好分完;五年级参加植树的同学至少有多少人? 13x14=192人

答:五年级参加植树的人至少有192人.

下面几道题目虽然属于应用题;但跟方程有关。我都是用方程解答的。

5、两辆汽车从一个地方相背而行.一车每小时行31千米;一车每小时行44千米.经过多少分钟后两车相距300千米?

方程:

解:两车x时后相遇.

31x+44x=300

75x=300

x=4

4小时=240分钟

答:经过240分钟后两车相距300千米.

6、两个工程队要共同挖通一条长119米的隧道;两队从两头分别施工.甲队每天挖4米;乙队每天挖3米;经过多少天能把隧道挖通?

解:设x天后挖通隧道

3x+4x=119

7x=119

x=17

答:经过17天挖通隧道.

7、学校合唱队和舞蹈队共有140人;合唱队的.人数是舞蹈队的6倍;舞蹈队有多少人?解:设舞蹈队有x人

6x+x=140

7x=140

x=20人

答:舞蹈队有20人.

从这里开始不是方程题了.

8、兄弟两个人同时从家里到体育馆;路长1300米.哥哥每分步行80米;弟弟骑自行车以每分180米的速度到体育馆后立刻返回;途中与哥哥相遇;这时哥哥走了几分钟?

1300x2=2600米

2600÷(180+80)

=2600÷260

=10分

答:这时哥哥走了10分钟.

9、六一儿童节;王老师买了360块饼干;480块糖;400个水果;制作精美小礼包;分给小朋友作为礼物;至多可做几个小礼包?

360+480+400=1240个

答:至多可做1240个小礼包.

10、淘气买了40个气球;请同学来家比吹气球.为了能把气球平分;淘气应该请几个同学来比吹气球?淘气不参加.

40÷2=20人40÷4=10人40÷5=8人

40÷8=5人40÷10=4人40÷20=2人

答:请同学的方法有6种;分别是:20人;10人;5人;8人;4人;2人.

11、一块梯形的玉米地;上底15米;下底24米;高18米.每平方米平均种玉米9株;这块地一共可种多少株玉米?

(15+24)x18÷2=351平方米

351x9=3195株

答:这块地可种玉米3159株.

12、某班学生人数在100人以内;列队时;每排5人;4人;3人都刚好多一人;这班有多少人?

5x4x3=60人60+1=61人

答:这班有61人.

13、王月有一盒巧克力糖;每次7粒;5粒;3粒的数都余1粒;这盒巧克力糖至少有多少粒?

7x5x3=105粒105+1=106粒

答:这盒巧克力糖至少有106粒.

14、晨光小区有一段长15米;宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖;请你算一算:需要几块这样的方砖?如果每块方砖3元;那么铺这段甬道需要多少元?

15米=150分米1.2米=12分米30厘米=3分米

150x12=1800平方分米3x3=9平方分米

1800÷9=200块200x3=600元

答:需要200块这样的方砖;需要600元.

15、有两块面积相等的平行四边形实验田;一块底边长70米;高45米;另一块底边长90米;高是多少米?

70x45=3150平方米3150÷90=35米

答:高是35米.

16、一批钢管叠成一堆;最下层有10根;每上1层少放1根;最上1层放了5根.这批钢管有多少根?

10-5+1=6层(10+5)x6÷2

=15x6÷2

=90÷2

=45根

答:这批钢管有45根.

17、有一些糖果;平均分别给21个小朋友剩20块;平均分给35个小朋友剩34块;平均分给56个小朋友剩55块。你知道这堆糖果至少有多少块吗?

解:21、35、56的最小公倍数是840;840-1=839(块)

答:这堆糖果至少有839块

18、2台同样的抽水机;3小时可以浇地1.2公顷;1台抽水机每小时可以浇地多少公顷?

1.2÷3=0.4 0.4÷2=0.2

19、前年小明比妈妈小24岁;今年妈妈的年龄是小明的3倍。小明和妈妈今年分别是多少岁?

设小明年龄是x;

则3x-x=24 x=12

小明12;妈妈36

20、一个立方体的棱长总和是48分米;它的表面积和体积各是多少?

解:48÷12=4分米

则表面积为4x4=16平方分米

16x6=96平方分米

体积为4x4x4=64立方分米

最简单的数学应用题(篇10)

1、小明折了9只纸飞机,比小军少折3只,小军折了几只纸飞机?

2、池塘的荷叶上有6只青蛙,跳来了3只,又跳走了4只。池塘里还有几只青蛙?

3、小丁丁做口算题对了21道,错了14道。他一共做了几道口算题?

4、篮子里有10个苹果,被小丁丁吃掉1个,又被爸爸吃掉2个。现在还有多少个?

5、妈妈买来10个苹果,小丁丁和爸爸各吃了2个。现在还有多少个?

6、小红有16本故事书,比小芳多3本,比小明少两本。小芳和小明各有多少本故事书?

7、湖中有8只天鹅,飞走了2只,又飞来了6只,湖中还有几只天鹅?

8、盒子里有一些月饼,爸爸、妈妈各吃了1个,小明吃了2个,还剩5个。盒子里原来有几个月饼?

9、商店里有20瓶汽水,上午卖掉了9瓶,下午卖掉的和上午一样多,一共卖掉几瓶?还剩几瓶?

10、小丽有10支铅笔,小云有16支铅笔。小云送给小丽几支后,两人的铅笔同样多?

11.教室里有男生8人,女生10人,一共有几人?教室里有18人,走了5人,还剩几人?

12.一根绳子对折后长7米,这根绳子原来长多少米?这根绳子用掉6米后,还剩几米?

13.小明看一本故事书,第一天看了6页,第二天看了10页,第三天从第几页看起?

14.小丽排队做操,从前面数起他是第5个,从后面数起他也是第5个,这一排一共有多少个学生?

15.军军从一楼走到二楼需要1分钟,用这样的速度他从一楼走到五楼,再从五楼回到一楼共需要多少分钟?

16.明明从家走到学校要走6千米,这一天他走到一半,返回家拿作业本,又立即赶回学校,这一天他从家到学校一共走了多少米?

17. 车上原有20人,到站下车8人,上车5人,这时车上有多少人?

18.原来有18个苹果,红红吃了一些,还剩下9个,小红吃了几个苹果?

19.猫妈妈钓来一些鱼,小花猫吃了一条,把剩下的'一半分给了小白猫,小花猫又吃了1条,再把剩下的一半分给了小黑猫,这时,小花猫还有4条鱼,你能算出猫妈妈一共掉了多少条鱼吗?

20.小军吃了5个苹果,还剩下3个,小军原来有多少个苹果?

参考答案

1. 12

2. 5

3. 35

4. 7

5. 6

6. 13 18

7. 12

8. 9

9. 18 2

10. 3

11. 18 13

12. 14 8

13. 17

14. 9

15. 8

16. 9

17. 17

18. 9

19. 19

20. 8

本文来源://www.xmw98.com/x/1394.html